جامعة القاضي عباض الكلية المتعددة التخصصات شعبة الفيزياء- أسفى-

Épreuve de mécanique du point Session de rattrapage : 06 Février 2018

Questions de cours: Collision d'un projectile sur une cible

Filières : SMPC-SMIA **Durée** : 1h30

Soit un point M_1 de masse m_1 animé juste avant le choc d'une vitesse v_1 . Soit un point M_2 de masse m_2 au repos. On suppose que le choc entre les deux points M_1 et M_2 est pratiquement élastique et que les deux points qui entrent en collision sont en mouvement suivant un axe horizontal. Après le choc les vitesses de M_1 et M_2 sont respectivement v_1' et v_2' .

1. Calculer v_2 en fonction de v_1 , m_1 et m_2 .

- 2. Que se passe-t-il dans des rapports particuliers entre m_1 et m_2 :
 - a. Si le projectile est beaucoup plus léger que la cible,
 - b. Si le projectile est beaucoup plus lourd que la cible,
 - c. Si $m_1 = m_2$.

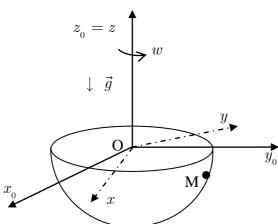
<u>Problème:</u>

Un point matériel de masse m est astreint à se déplacer sans frottement sur la surface intérieure d'une demi-sphère creuse (S) de rayon r_0 . Cette surface tourne uniformément autour de l'axe vertical ascendant (Oz_0) à la vitesse angulaire ω constante dans le repère galiléen $R_0(O,x_0,y_0,z_0)$ muni de la base $(\vec{i_0},\vec{j_0},\vec{k_0})$ orthonormée et directe (voir figure ci-dessous).

On associe à la demi-sphère (S) le référentiel relatif $R(O,x,y,z=z_{\scriptscriptstyle 0})$ muni de la base $(\vec{i},\vec{j},\vec{k}=\vec{k}_{\scriptscriptstyle 0})$ orthonormée et directe dont le point matériel M est repéré par ces trois coordonnées cartésiennes $x, y \ et \ z \ \text{tel que} : \overrightarrow{OM} = x \ \vec{i} + y \ \vec{j} + z \ \vec{k}$.

On se propose d'étudier le mouvement de M par rapport au référentiel relatif $R(O, x, y, z = z_0)$.

N.B: Toutes les expressions vectorielles doivent être exprimées dans la base $(\vec{i}, \vec{j}, \vec{k} = \vec{k}_0)$.



2

Partie A:

1

1

1

2

1

2

2

2

1

1

Définir puis exprimer:

- a) La vitesse d'entraı̂nement : $\vec{V_{_{e}}}(M) = \vec{V}(M \in R \ / \ R_{_{0}})$.
- b) L'accélération d'entraînement : $\vec{\gamma}_{e}(M) = \vec{\gamma}(M \in R / R_{0})$.
- c) L'accélération de Coriolis : $\vec{\gamma}_c(M)$.

Partie B:

- a) Faire le bilan de toutes les forces exercées sur M dans le repère relatif R.
- b) Vérifier que la force de réaction R qu'exerce la demi-sphère (S) sur M peut s'écrire sous la forme : $\vec{R} = \frac{-R}{r_0} \vec{r}$ où $\vec{r} = \overrightarrow{OM}$.
- c) Exprimer la force d'inertie d'entraînement: \vec{F}_{ie} .
- d) Exprimer la force d'inertie de Coriolis: \vec{F}_{ic} .
- e) En appliquant le principe fondamental de la dynamique dans le repère relatif R, établir les équations différentielles vérifiées par x, y et z.
- f) Qu'elle est, en fonction de z, l'énergie potentielle de pesanteur de M ? On prendra l'origine de l'énergie potentielle à z=0.
- g) Montrer que la force d'inertie d'entraı̂nement dérive d'une énergie potentielle E_{pe} . L'exprimer en fonction de z sachant que sa référence étant aussi prise en z=0.
- h) Déduire l'énergie potentielle totale de M.