Université Cady Ayyad, Marrakech Faculté polydisciplinaire - Safi Session Normale d'Automne (S1) Année universitaire 2017 - 2018

Filières : SMIA Durée : 2 h

Examen de Mécanique du Point Matériel

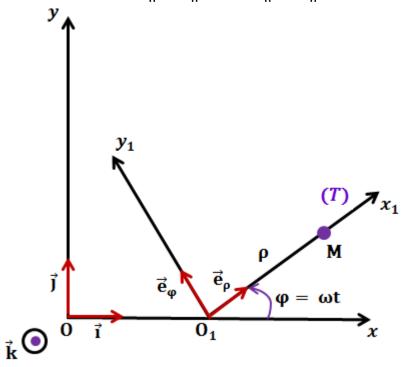
Glissement d'un anneau sans frottement sur une tige (T)

Soit Oxy un plan vertical d'un référentiel fixe supposé Galiléen R(0, x, y, z) de base $(\vec{i}, \vec{j}, \vec{k})$ orthonormée et directe. Un point matériel M de masse m se déplace sans frottement sur une tige (T) qui constamment (toujours) en contact par son extrémité O_1 avec l'axe ox. Le point O_1 se déplace sur l'axe ox. (Voir figure ci-dessous).

Soit $R_1(O_1, x_1, y_1, z_1 = z)$ de base $(\overrightarrow{e_\rho}, \overrightarrow{e_\phi}, \overrightarrow{k})$ orthonormée et directe, un référentiel relatif lié à la tige (T) tel que l'axe O_1x_1 confondu avec (T).

La tige (T) effectue également un mouvement de rotation uniforme autour de l'axe $\mathbf{0}_1\mathbf{z}_1$.

Les paramètres du système seront : $\|\overrightarrow{OO_1}\| = x(t)$, $\|\overrightarrow{O_1M}\| = \rho(t)$ et $\varphi(t) = (\vec{i}, \vec{e_\rho})$



N.B : Toutes les expressions vectorielles doivent être exprimées dans la base $(\vec{e}_{
ho},\vec{e}_{\phi},\vec{k})$

A- Cinématique

- 1- Le référentiel R_1 est-il Galiléen ? Justifier clairement votre réponse.
- 2- Donner le vecteur vitesse de rotation de R_1 par rapport à $R: \overrightarrow{\Omega}(R_1/R)$.
- 3- Déterminer la vitesse et l'accélération du point O_1 par rapport à R dans la base $(\vec{i}, \vec{j}, \vec{k})$.
- 4- Déterminer le vecteur position \overline{OM} .
- 5- Calculer directement dans la base $(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{k})$:
- 5- 1- La vitesse absolue de M : \vec{V} (M/R).
- 5- 2- L'accélération absolue de : $\vec{\gamma}$ (M/R).

- 6- Déterminer dans la base $(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{k})$ de R_1 .
- 6-1- La vitesse relative de M : \overrightarrow{V} (M/R_1).
- 6-2- La vitesse d'entrainement de M : $\overrightarrow{V_e}$ (M).
- 6-3- L'accélération relative de M : $\overrightarrow{\gamma_r}$ (*M*).
- 6-4- L'accélération d'entrainement de M : $\overrightarrow{\gamma_e}$ (*M*).
- 6-4- L'accélération de Coriolis de M : $\overrightarrow{\gamma_C}$ (*M*).
- 7- Les lois de composition des vitesses et des accélérations sont-elles vérifiées?

B- Dynamique

L'expression générale de la réaction \vec{R} de la tige (T) sur M peut s'écrire sous la forme :

$$\vec{R} = R_{\rho} \vec{e_{\rho}} + R_{\varphi} \vec{e_{\varphi}} + R_{z} \vec{k}$$

- 1- Justifier que la composante R_{ρ} de la réaction \vec{R} est nulle.
- 2- Exprimer les forces appliquées à M dans le référentiel R_1 .
- 3- Appliquer à M le principe fondamental de la dynamique dans le référentiel mobile R_1 .
- 4- Déduire de ce principe :
- a- L'équation différentielle du mouvement de M le long de la tige (T). On posera : $\ddot{x} = a$.
- b- Les composantes R_{φ} et R_z de la réaction \vec{R} de la tige.
- 5- Quelle sera la vitesse minimale de M sur la tige pour que le contact entre M et (T) puisse continuer à exister dans le temps ?

Correction de l'examen de Mécanique du Point Matériel

A- Cinématique

1- Le référentiel R₁ n'est pas Galiléen car il n'est pas en translation rectiligne et uniforme par rapport à R.

2- Le vecteur vitesse de rotation de R_1 par rapport à R est : $\vec{\Omega}(R_1/R) = \dot{\phi}\vec{k} = \omega \vec{k}$.

3- La vitesse et l'accélération du point O_1 par rapport à R dans la base $(\vec{i}, \vec{j}, \vec{k})$.

$$\vec{V}\left(\frac{O_1}{R}\right) = \frac{d\overrightarrow{OO_1}}{dt} \Big)_R \quad \Rightarrow \quad \vec{V}\left(O_1/R\right) = \dot{x} \ \vec{i} = \dot{x}\cos\varphi \ \overrightarrow{e_\rho} - \dot{x}\sin\varphi \ \overrightarrow{e_\varphi}$$

 $A \operatorname{vec} \vec{\imath} = \cos \varphi \ \overrightarrow{e_{\rho}} - \sin \varphi \ \overrightarrow{e_{\varphi}}$

$$\vec{\gamma} \left(\frac{O_1}{R} \right) = \frac{d\vec{V} \left(\frac{O_1}{R} \right)}{dt} \right)_R = \frac{d\vec{x} \ \vec{i}}{dt} \right)_R$$

$$\Rightarrow \vec{\gamma} \left(O_1/R \right) = \ddot{x} \ \vec{i} = \ddot{x} \cos \varphi \ \vec{e_\rho} - \ddot{x} \sin \varphi \ \vec{e_\varphi}$$

4- Le vecteur position \overrightarrow{OM} en fonction de x, ρ , \vec{i} et $\overrightarrow{e_{\rho}}$: $\overrightarrow{OM} = x \vec{i} + \rho \vec{e_{\rho}}$

5- Calculons directement dans la base $(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{k})$:

5- 1- La vitesse absolue de M : $\vec{V}(M/R) = \frac{d\vec{OM}}{dt}\Big|_{R} = \dot{x} \vec{i} + \dot{\rho} \vec{e_{\rho}} + \rho\omega \vec{e_{\phi}}$.

$$\Rightarrow \vec{V}(M/R) = (\dot{x}\cos\varphi + \dot{\rho}) \vec{e_{\rho}} + (\rho\omega - \dot{x}\sin\varphi) \vec{e_{\varphi}}$$

5- 2- L'accélération absolue de : $\vec{\gamma}$ (M/R).

$$\vec{\gamma} (M/R) = (\ddot{x} \cos \varphi + \ddot{\rho} - \rho \omega^2) \vec{e_\rho} + (2\dot{\rho}\omega - \ddot{x} \sin \varphi) \vec{e_\varphi}$$

6- Déterminons dans la base $(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{k})$ de R_1 .

6-1- La vitesse relative de M : \vec{V} (M/R_1).

$$\vec{V}(M/R_1) = \frac{d\vec{O_1M}}{dt}\Big|_{R_1} = \dot{\rho} \vec{e_\rho}$$

6-2- La vitesse d'entrainement de M : \overrightarrow{V}_e (M).

$$\overrightarrow{V_e}(M) = \left(\frac{d\overrightarrow{OM}(M \in R_1)}{dt}\right)_R = \frac{d\overrightarrow{OO_1}}{dt} + \overrightarrow{\Omega}(R_1/R) \wedge \overrightarrow{O_1M}$$

$$\overrightarrow{V_e}(M) = \dot{x} \vec{i} + \omega \vec{k} \wedge \rho \overrightarrow{e_\rho} = \dot{x} \left(\cos \varphi \overrightarrow{e_\rho} - \sin \varphi \overrightarrow{e_\varphi}\right) + \omega \rho \overrightarrow{e_\varphi}$$

Donc

$$\overrightarrow{V_e}(M) = (\dot{x}\cos\varphi)\overrightarrow{e_\rho} + (\omega\rho - \dot{x}\sin\varphi)\overrightarrow{e_\varphi}$$

6-3- L'accélération relative de M : $\overrightarrow{\gamma_r}$ (M).

$$\vec{\gamma} (M/R_1) = \frac{d^2 \overline{O_1 M}}{dt^2} \Big|_{R_1} = \vec{\rho} \ \vec{e_\rho}$$

6-4- Accélération d'entrainement de M : $\overrightarrow{\gamma_e}$ (*M*).

$$\begin{split} \overrightarrow{\gamma_e}\left(M\right) &= \frac{d^2\overrightarrow{OM}(M \in R_1)}{dt^2} = \left(\frac{d^2\overrightarrow{OO_1}}{dt^2}\right)_{/R} + \frac{d}{dt} \left(\Omega(R_1/R) \wedge \overrightarrow{O_1M}\right)_{/R} \\ &= \overrightarrow{\gamma}(O_1/R) + \frac{d\Omega(R_1/R)}{dt} \wedge \overrightarrow{O_1M} + \Omega(R_1/R) \wedge \left(\Omega(R_1/R) \wedge \overrightarrow{O_1M}\right)_{\overline{R}} \\ &= \overrightarrow{x}\overrightarrow{\iota} + \omega \overrightarrow{k} \wedge \left(\omega \overrightarrow{k} \wedge \overrightarrow{e_\rho}\right) = \overrightarrow{x}\overrightarrow{\iota} + \omega \overrightarrow{k} \wedge \rho \omega \overrightarrow{e_\varphi}\right) = \overrightarrow{x}\overrightarrow{\iota} - \rho \omega^2 \overrightarrow{e_\rho} \end{split}$$

Donc: $\overrightarrow{\gamma_e}(M) = (\ddot{x}\cos\varphi - \rho\omega^2) \overrightarrow{e_\rho} - \ddot{x}\sin\varphi \overrightarrow{e_\varphi}$

6-4- L'accélération de Coriolis de M : $\overrightarrow{\gamma_C}$ (*M*).

$$\overrightarrow{\gamma_C}\left(M\right) = \, 2\Omega(R_1/R) \, \, \wedge \, \, \overrightarrow{V_r}(M) = \, 2\omega \vec{k} \, \, \wedge \, \, \dot{\rho} \, \, \overrightarrow{e_\rho} \, \, \Longrightarrow \, \, \overrightarrow{\gamma_C}\left(M\right) = \, \, 2\omega \dot{\rho} \overrightarrow{e_\varphi}$$

7- vérifions les lois de composition des vitesses et des accélérations.

On a:
$$\overrightarrow{V_r}(M) + \overrightarrow{V_e}(M) = (\dot{x}\cos\varphi + \dot{\rho})\overrightarrow{e_\rho} + (\omega\rho - \dot{x}\sin\varphi)\overrightarrow{e_\varphi} = \overrightarrow{V}(M/R)$$

et

$$\overrightarrow{\gamma_r}(M) + \overrightarrow{\gamma_e}(M) + \overrightarrow{\gamma_c}(M) = (\ddot{x}\cos\varphi + \ddot{\rho} - \rho\omega^2)\overrightarrow{e_\rho} + (2\omega\dot{\rho} - \ddot{x}\sin\varphi)\overrightarrow{e_\varphi} = \vec{\gamma}(M/R)$$

Les lois de composition du mouvement sont bien vérifiées

B- Dynamique

L'expression générale de la réaction \vec{R} de la tige (T) sur M peut s'écrire sous la forme :

$$\vec{R} = R_{\rho} \vec{\mathbf{e}_{\rho}} + \mathbf{R}_{2} \vec{\mathbf{e}_{\phi}} + \mathbf{R}_{z} \vec{\mathbf{k}}$$

1- Justifier que la composante R_{ρ} de la réaction \vec{R} est nulle.

 R_1 est nulle car M se déplace sans frottement sur la tige (T)

- 2- Faire le bilan des forces appliquées à M dans le référentiel R_1 .
 - Poids: $\vec{P} = -mg \vec{j} = -mg(\sin\varphi \vec{e_{\rho}} + \cos\varphi \vec{e_{\varphi}})$
 - Réaction de la tige : $\vec{R} = R_{\varphi} \; \overrightarrow{e_{\varphi}} + \; R_{z} \; \vec{k}$
 - Force d'inertie d'entrainement : $\overrightarrow{F_{le}} = -m\overrightarrow{\gamma_e}(M) = -m(\ddot{x}\cos\varphi \rho\omega^2)\overrightarrow{e_\rho} + m\ddot{x}\sin\varphi \overrightarrow{e_\omega}$
 - Force d'inertie de Coriolis : $\overrightarrow{F_{lc}} = -m\overrightarrow{\gamma_C}(M) = -2m\omega\dot{\rho}\overrightarrow{e_{\varphi}}$
- 3- Appliquer à M le principe fondamental de la dynamique dans le référentiel mobile \mathbb{R}_1 .

$$\sum \overrightarrow{F_{r\'eelle}} \ + \ \sum \overrightarrow{F_{inertie}} \ = \ m\overrightarrow{\gamma_r}(M) \ \implies \ \overrightarrow{P} \ + \ \overrightarrow{R} \ + \ \overrightarrow{F_{ie}} \ + \ \overrightarrow{F_{ic}} \ = \ m\overrightarrow{\gamma_r}(M)$$

 \Rightarrow

$$[-mgsin\varphi - m \left(\ddot{x}\cos\varphi - \rho\omega^{2}\right)] \overrightarrow{e_{\rho}} + [m(\ddot{x}\sin\varphi - g\cos\varphi - 2\omega\dot{\rho}) + R_{\varphi})\overrightarrow{e_{\varphi}} + R_{z} \overrightarrow{k}$$

$$= m \ddot{\rho} \overrightarrow{e_{\rho}}$$

4- Déduire de ce principe :

a- L'équation différentielle du mouvement de M le long de la tige (T).

Soit
$$\ddot{\rho} - \omega^2 \rho = a \cos \varphi + g \sin \varphi$$
 avec $\ddot{x} = a$

b- Les composantes R_{φ} et R_z de la réaction \vec{R} de la tige.

La projection de la PFD sur $\overrightarrow{e_{\varphi}}$ donne la composante de R_{φ} de \overrightarrow{R} .

$$R_{\varphi} = m(g\cos\varphi - a\sin\varphi + 2\omega\dot{\rho})$$

La projection de la PFD sur \vec{k} donne la composante de R_z de \vec{R} .

Soit
$$R_z = 0$$

5- Pour que le contact entre M et (T) existe, il faut que :

$$R_{\varphi} \geq 0$$

$$\Rightarrow d'après 4 - b): \dot{\rho} \geq \frac{a\sin\varphi - g\cos\varphi}{2\omega} = \dot{\rho}_{min} = \vec{V}_{min}(M/R_1)$$