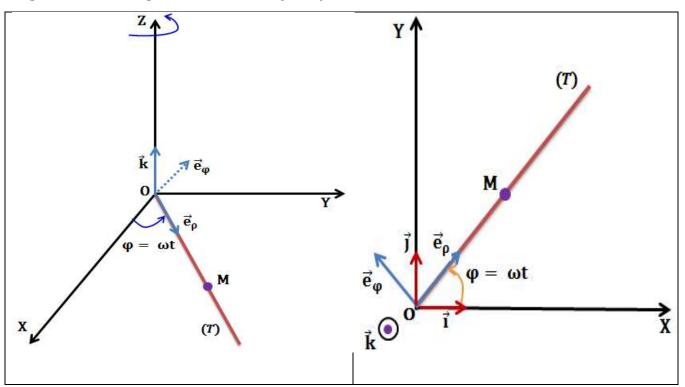
Année universitaire 2017 - 2018

Filières : SMPC Durée : 2 h

Examen de Mécanique du Point Matériel

Glissement d'un anneau sans frottement sur une tige (T)

Un anneau assimilé à un point matériel M de masse m coulisse sans frottement le long de la tige (T) qui tourne dans le plan horizontal (XOY) autour de l'axe (OZ) avec une vitesse angulaire constante $(\varphi = \omega t \text{ avec } \omega > 0)$. Soit $\Re(0,\vec{t},\vec{j},\vec{k})$ un référentiel orthonormé direct et Galiléen, et soit $\Re'(0,\vec{e}_{\rho},\vec{e}_{\varphi},\vec{k})$ un référentiel lié à la tige. M est lancée depuis le point 0 avec une vitesse $\vec{v}_0 = v_0 \vec{e}_{\rho}$ ($v_0 > 0$), elle soumit en plus des forces habituelles, à une force $\vec{F} = -2m\omega\dot{\rho}\ \vec{e}_{\rho}$ (Figures ci-dessous). Le mouvement du point M décrit par les variables ρ et φ .



N.B : Toutes les expressions vectorielles doivent être exprimées dans la base $(\vec{e}_{
ho},\vec{e}_{\phi},\vec{k})$

Partie I : Etude dans le référentiel R (Galiléen)

I- Application du principe fondamentale de la dynamique

1- Calculer le vecteur position $\overrightarrow{\mathbf{OM}}$, la vitesse \overrightarrow{V} (M/\Re) et l'accélération $\overrightarrow{\gamma}$ (M/\Re) de M.

1.25

1.5

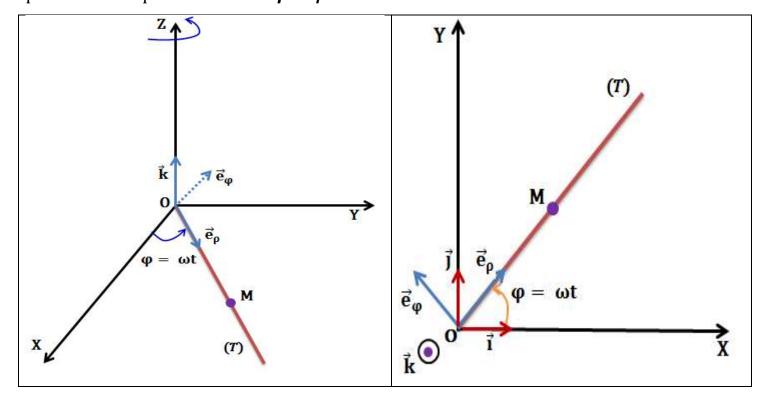
2- Exprimer les forces appliquées à M dans la base $(\vec{e}_{\rho},\vec{e}_{\varphi},\vec{k})$ par rapport au

référentiel galiléen	
3- Ecrire le principe fondamentale de la dynamique (PFD)	1
4- Par projection du PFD suivant $ec{e}_{ ho}$; déduire l'équation différentielle du mouvement.	1
II- Application du théorème du moment cinétique	
1- Déterminer $\vec{\sigma}_{0}(M/\Re)$ le moment cinétique en 0 du point M ainsi que sa dérivée	1
par rapport au temps dans \Re .	
2- Déterminer les moments de chacune des forces agissant sur le point M .	1.5
3- En appliquant le théorème du moment cinétique, trouver les expressions de la	2
composante de \overrightarrow{R} .	
III- Application du théorème de l'énergie cinétique	
1- Déterminer $E_{\mathcal{C}}(M/\Re)$ l'énergie cinétique du point M dans \Re ainsi que sa dérivée	1
par rapport au temps dans \Re .	
2- Déterminer les puissances de chacune des forces agissant sur le point M .	1.5
3- En appliquant le théorème de l'énergie cinétique, trouver l'équation différentielle	1.5
du mouvement.	
Partie II : Etude dans le référentiel R' (non Galiléen)	
1. Coloular la vitagga relativa $\overrightarrow{V}(M/\mathfrak{D}')$ et la vitagga d'entre in ement $\overrightarrow{V}(M)$	0.75
1- Calculer la vitesse relative $\vec{V}(M/\Re')$ et la vitesse d'entrainement $\vec{V_e}(M)$	
2- Calculer l'accélération relative, l'accélération d'entraînement et l'accélération de	1.25
Coriolis du point M .	1.75
3- Donner l'expression des forces appliquées à M dans la base ($\vec{e}_{ ho}$, \vec{e}_{arphi} , \vec{k})	1
4- Ecrire le principe fondamentale de la dynamique (PFD) dans \Re' .	
5- Retrouver l'équation différentielle du mouvement. Déduire l'équation horaire du	1.5
mouvement.	0.5
6- Retrouver les expressions des composantes de la réaction.	

Pr : ELOUARDI ELMOKHTAR dataelouardi.com

Correction de l'examen de Mécanique du Point Matériel

Soit un anneau assimilé à un point matériel M de masse m coulisse sans frottement le long de la tige (T) qui tourne dans le plan horizontal (XOY) autour de l'axe (OZ) avec une vitesse angulaire constante ($\varphi = \omega t$ avec $\omega > 0$). $\Re(0,\vec{\iota},\vec{j},\vec{k})$ un référentiel orthonormé direct et Galiléen, et soit $\Re'(0,\vec{e}_{\rho},\vec{e}_{\varphi},\vec{k})$ un référentiel lié à la tige. M est lancée depuis le point 0 avec une vitesse $\vec{v}_0 = v_0 \vec{e}_{\rho}$ ($v_0 > 0$), elle soumit en plus des forces habituelles, à une force $\vec{F} = -2m\omega\dot{\rho}\ \vec{e}_{\rho}$ (Figures ci-dessous). Le mouvement du point M décrit par les variables ρ et φ .



Partie I : Etude dans le référentiel R (Galiléen)

I- Application du principe fondamentale de la dynamique

1- Calculons le vecteur position $\overrightarrow{\mathbf{OM}}$, la vitesse \overrightarrow{V} (M/\Re) et l'accélération $\overrightarrow{\gamma}$ (M/\Re) de M dans \Re .

* Vecteur position : $\overrightarrow{OM} = \rho \overrightarrow{e}_{\rho}$

* Vecteur vitesse: $\vec{V}(M/R) = \frac{d\vec{OM}}{dt}\Big|_{\Re} = \dot{\rho}\vec{e}_{\rho} + \rho\omega\vec{e}_{\phi}$

* Vecteur accélération :

$$\begin{split} \vec{\gamma}(M/R) &= \frac{d\vec{V}(M/R)}{dt} \bigg|_{\mathfrak{R}} = \frac{d \left(\dot{\rho} \vec{e}_{\rho} + \rho \omega \vec{e}_{\phi} \right)}{dt} = \; \ddot{\rho} \; \vec{e}_{\rho} + \dot{\rho} \frac{d \vec{e}_{\rho}}{dt} + \dot{\rho} \omega \vec{e}_{\phi} + \rho \omega \frac{d \vec{e}_{\phi}}{dt} \\ \vec{\gamma}(M/R) &= \ddot{\rho} \; \vec{e}_{\rho} + \dot{\rho} \omega \vec{e}_{\phi} + \dot{\rho} \omega \vec{e}_{\phi} - \rho \omega^{2} \vec{e}_{\rho} \\ Avec : \frac{d \vec{e}_{\rho}}{dt} = \; \omega \vec{e}_{\phi} \qquad \text{et} \qquad \frac{d \vec{e}_{\phi}}{dt} = -\omega \vec{e}_{\rho} \\ \vec{\gamma}(M/R) &= (\ddot{\rho} - \rho \omega^{2}) \; \vec{e}_{\rho} + 2\dot{\rho} \omega \vec{e}_{\phi} \end{split}$$

2- On exprime les forces appliquées à M dans la base (\vec{e}_{ρ} , \vec{e}_{φ} , \vec{k}) par rapport au référentiel galiléen

- $\stackrel{\bigstar}{=}$ le poids : $\overrightarrow{P} = m \overrightarrow{g} = -m g \overrightarrow{k}$,
- * la réaction de la tige qui est normale à celle-ci, puisque les frottements sont négligeables (la composante de \vec{R} suivant \vec{e}_{ρ} est nul : $\mathbf{R}_{\rho} = \mathbf{0}$) : $\vec{R} = \mathbf{R}_{\varphi} \vec{e}_{\varphi} + \mathbf{R}_{z} \vec{k}$
- * La force : $\vec{F} = -2m\omega\dot{\rho} \vec{e}_{\rho}$
- 3- Ecrivons le principe fondamentale de la dynamique (PFD) par rapport au référentiel Galiléen :

$$\begin{split} \sum \overrightarrow{F_{ext}} &= m \vec{\gamma} (M/R) \\ -m g \vec{k} + R_{\varphi} \vec{e}_{\varphi} + R_{z} \vec{k} - 2m \omega \dot{\rho} \ \vec{e}_{\rho} &= m [(\ddot{\rho} - \rho \omega^{2}) \ \vec{e}_{\rho} + 2 \dot{\rho} \omega \vec{e}_{\varphi}] \\ -2m \omega \dot{\rho} \ \vec{e}_{\rho} + R_{\varphi} \vec{e}_{\varphi} + (R_{z} - mg) \vec{k} &= m (\ddot{\rho} - \rho \omega^{2}) \ \vec{e}_{\rho} + 2m \dot{\rho} \omega \vec{e}_{\varphi} \end{split}$$

4- Par projection du PFD suivant $\vec{e}_{
ho}$

L'équation différentielle du mouvement.

Pour trouver cette équation, il faut faire une projection sur un vecteur de telle sorte éliminer les composantes de la réaction.

$$\Rightarrow m(\ddot{\rho} - \rho\omega^2) = -2m\omega\dot{\rho} \Rightarrow \ddot{\rho} + 2\omega\dot{\rho} - \omega^2\rho = 0$$

II- Application du théorème du moment cinétique

1- Déterminons $\vec{\sigma}_{0}(M/\Re)$ le moment cinétique en 0 du point M ainsi que sa dérivée par rapport au temps dans \Re .

$$\vec{\sigma}_{O}(M/\Re) = \vec{OM} \wedge m\vec{V}(M/\Re) = \rho \vec{e}_{\rho} \wedge m(\dot{\rho}\vec{e}_{\rho} + \rho\omega\vec{e}_{\phi}) = m\rho^{2}\omega \vec{k}$$

$$\frac{d\vec{\sigma}_{O}(M/\Re)}{dt} = 2 m\rho\dot{\rho}\omega \vec{k}$$

2- On détermine les moments de chacune des forces agissant sur le point *M*.

$$\mathcal{M}_{O}(\vec{F}) = \overrightarrow{OM} \wedge \vec{F} = \rho \vec{e}_{\rho} \wedge -2m\omega\dot{\rho} \vec{e}_{\rho} = 0$$

$$\mathcal{M}_{O}(\vec{P}) = \overrightarrow{OM} \wedge \vec{P} = \rho \vec{e}_{\rho} \wedge -mg\vec{k} = \rho mg\vec{e}_{\phi}$$

$$\mathcal{M}_{O}(\vec{R}) = \overrightarrow{OM} \wedge \vec{R} = \rho \vec{e}_{\rho} \wedge (R_{\varphi}\vec{e}_{\varphi} + R_{z}\vec{k}) = -\rho R_{z}\vec{e}_{\varphi} + \rho R_{\varphi}\vec{k}$$

3- Les expressions des composantes de \vec{R} .

$$\frac{d\vec{\sigma}_{O}(M/\Re)}{dt} = \mathcal{M}_{O}(\vec{F}) + \mathcal{M}_{O}(\vec{P}) + \mathcal{M}_{O}(\vec{R})$$
$$2 m\rho\dot{\rho}\omega \vec{k} = \rho(mg - R_{z})\vec{e}_{\varphi} + \rho R_{\varphi}\vec{k}$$

Par identification, on trouve:

$$R_{\varphi} = 2m\dot{\rho}\omega$$
 et $R_z = mg$

III- Application du théorème de l'énergie cinétique

- 1- On détermine $E_{\mathcal{C}}(M/\Re)$ l'énergie cinétique du point M dans \Re ainsi que sa dérivée par rapport au temps dans \Re .
 - * L'énergie cinétique s'exprime comme suit :

$$E_{\mathcal{C}}(M/\Re) = \frac{1}{2}mV(M/\Re) = \frac{1}{2}m(\dot{\rho}^2 + \rho^2\omega^2)$$

苯 La dérivée de l'énergie cinétique s'exprime alors :

$$\frac{dE_C(M/\Re)}{dt} = m(\dot{\rho}\ddot{\rho} + \rho\dot{\rho}\omega^2)$$

2- Déterminons les puissances de chacune des forces agissant sur le point M.

*
$$P(\vec{P}/\Re) = \vec{P} \cdot \vec{V}(M/\Re) = -mg \vec{k} \cdot (\dot{\rho}\vec{e}_{\rho} + \rho\omega\vec{e}_{\phi}) = 0$$

3- Par applications du théorème de l'énergie cinétique.

$$\frac{dE_{C}(M/\Re)}{dt} = P(\vec{F}/\Re) + P(\vec{P}/\Re) + P(\vec{R}/\Re)$$

$$\Rightarrow m(\dot{\rho}\ddot{\rho} + \rho\dot{\rho}\omega^{2}) = -2m\omega\dot{\rho}^{2} + \rho\omega R_{\varphi}$$

On 'a:
$$\mathbf{R}_{\varphi} = 2m\dot{\rho}\omega$$

$$\Rightarrow m(\dot{\rho}\ddot{\rho} + \rho\dot{\rho}\omega^{2}) = -2m\omega\dot{\rho}^{2} + 2m\,\rho\dot{\rho}\omega^{2}$$

$$\Rightarrow m\dot{\rho}\ddot{\rho} + m\rho\dot{\rho}\omega^{2} = -2m\omega\dot{\rho}^{2} + 2m\,\rho\dot{\rho}\omega^{2}$$

$$\Rightarrow \ddot{\rho} + \rho\omega^{2} = -2\omega\dot{\rho} + 2\,\rho\omega^{2}$$

On retrouve donc:

$$\Rightarrow \ddot{\rho} + 2\omega\dot{\rho} - \omega^2\rho = 0$$

Partie II: Etude dans le référentiel R' (non Galiléen)

1- On calcul la vitesse relative $\vec{V}(M/\Re')$ et la vitesse d'entrainement $\overrightarrow{V_e}(M)$

- * la vitesse relative : $\vec{V}(M/\Re') = \frac{d\vec{OM}}{dt}\Big|_{\Re'} = \dot{\rho}\vec{e}_{\rho}$
- * la vitesse d'entrainement : $\overrightarrow{V_e}(M) = \frac{d \overrightarrow{oo}}{dt}\Big|_{\Re} + \overrightarrow{\omega} \wedge \overrightarrow{OM} = \overrightarrow{\omega} \wedge \rho \overrightarrow{e}_{\rho} = \rho \omega \overrightarrow{e}_{\phi}$
- 2- On calcul l'accélération relative, l'accélération d'entraînement et l'accélération de Coriolis du point **M**.
 - * L'accélération relative :

$$|\vec{\gamma}_r(M)| = \frac{d^2 \overrightarrow{OM}}{dt^2} \Big|_{\mathfrak{R}_l} = |\vec{\rho} \vec{\mathbf{e}}_{\rho}|$$

* L'accélération d'entraînement :

$$\vec{\gamma}_{e}(M) = \frac{d^{2} |\overrightarrow{OO}|}{dt^{2}} \Big|_{\Re} + \frac{d |\overrightarrow{\omega}|}{dt} \Big|_{\Re} \wedge |\overrightarrow{OM}| + |\omega \overrightarrow{k}| \wedge (\omega \overrightarrow{k}) \wedge |\overrightarrow{OM}| = |\omega \overrightarrow{k}| \wedge (\omega \overrightarrow{k}) \wedge |\overrightarrow{OM}|$$

$$= |\omega \overrightarrow{k}| \wedge \rho \omega \vec{e}_{\varphi} = -|\rho \omega|^{2} |\vec{e}_{\varphi}|$$

🇯 L'accélération de Coriolis :

$$\vec{\gamma}_c(M) = 2(\omega \vec{k} \wedge \vec{V}_r(M)) = 2\dot{\rho}\omega(\vec{k} \wedge \vec{e}_o) = 2\dot{\rho}\omega\vec{e}_o$$

3- L'expression des forces appliquées à M dans la base (\vec{e}_{ρ} , \vec{e}_{φ} , \vec{k})

- \divideontimes le poids : $\vec{P} = m \vec{g} = -mg\vec{k}$,
- * la réaction: $\vec{R} = R_{\omega}\vec{e}_{\omega} + R_{z}\vec{k}$
- * La force : $\vec{F} = -2m\omega\dot{\rho} \ \vec{e}_{\rho}$
- * Les forces d'inertie :
 - Force d'inertie d'entrainement : $\overrightarrow{F_{ie}} = -m\overrightarrow{\gamma}_e(M) = m\rho\omega^2 \overrightarrow{e}_\rho$
 - \P Force d'inertie de Coriolis : $\overrightarrow{F_{\iota c}} = -m \overrightarrow{\gamma}_c(M) = -2m \dot{\rho} \omega \overrightarrow{e}_{\phi}$
- 4- Le principe fondamentale de la dynamique (PFD) dans le référentiel non galiléen :

5- L'équation différentielle du mouvement.

6/2

La projection du PFD suivant \vec{e}_{ρ} :

$$[(-2m\omega\dot{\rho}\ + m\rho\omega^2\)\vec{e}_\rho + (R_\varphi\ - 2m\dot{\rho}\omega)\vec{e}_\varphi\ + (R_z-mg)\vec{k} = m\ddot{\rho}\vec{e}_\rho\].\ \vec{e}_\rho$$
 Ce qui donne :

$$-m\omega\dot{\rho} + 2m\rho\omega^2 = m\ddot{\rho} \iff \ddot{\rho} + 2\omega\dot{\rho} - \rho\omega^2 = 0$$

C'est une équation différentielle du second ordre à coefficients constants et sans second membre. L'équation caractéristique est : $r^2 + 2\omega r - \omega^2 = 0 \Rightarrow \Delta' = 2\omega^2$

$$\Rightarrow r_{1,2} = -\omega \mp \sqrt{\Delta'} = -\omega \mp \omega \sqrt{2}$$

et la solution est $\rho(t)=(Ae^{(\sqrt{2}-1)\omega t}+Be^{-(\sqrt{2}+1)\omega t})$. A et B sont déterminées à partir des conditions initiales $\rho(0)=0\Rightarrow A+B=0$ et $\dot{\rho}(0)=v_0=\omega\left(\sqrt{2}-1\right)A-(\sqrt{2}+1)B\right)$

$$\Rightarrow A = \frac{v_0}{2\sqrt{2}\omega} \text{ et } B = -\frac{v_0}{2\sqrt{2}\omega}$$

La solution est $ho(t)=rac{v_0}{2\sqrt{2}\omega}e^{-\omega t} \ sinh\sqrt{2}\omega t)$

6- Les expressions de composantes de la réaction.

- lpha La projection du PFD suivant $ec{f e}_{m \phi}$: \implies ${f R}_{m \phi} \, = \, {f 2} m \dot{m
 ho} m \omega$
- * La projection du PFD suivant \vec{k} : \Rightarrow $R_z = mg$